The problem with c++ is that it allows people to do whatever they want. Turns out: people are dumb. Rust solved that problem. Nothing more, nothing less.
I heavily disagree. C++ has a lot of problems but it’s flexibility is not one of them.
Imo the biggest problem with C++ is that there are a dozens ways of doing the same thing. The std lib is not general and fast enough for everyone. Therefore it’s not even “standard” .
I have seen many conferences of a proposed “cpp2” like syntax that breaks abi but imo it’s the best way forward.
C++ is technically safe if you follow best practices
Yeah but it’s virtually impossible to reliably follow best practices. The compiler won’t tell you when you’re invoking UB and there is a lot of potential UB in C++.
Sure, but you have to explicitly enable this feature. In c++ you can use the oldest shit from twenty years ago and your compiler happily does its job. All my c++ books are full of “you shouldn’t use xy as it is deemed unsafe now, but of course you still can”.
If a “safe C++” proposal truly proposes a safe subset, then yes your C++ code would have to opt-in to doing unsafe things. For the purposes of this discussion of a safe subset … the point is moot.
The problem with c++ is that it allows people to do whatever they want. Turns out: people are dumb. Rust solved that problem. Nothing more, nothing less.
I heavily disagree. C++ has a lot of problems but it’s flexibility is not one of them.
Imo the biggest problem with C++ is that there are a dozens ways of doing the same thing. The std lib is not general and fast enough for everyone. Therefore it’s not even “standard” .
I have seen many conferences of a proposed “cpp2” like syntax that breaks abi but imo it’s the best way forward.
Rust still allows people to do (basically) whatever they want via unsafe blocks.
Yeah but I have written a lot of Rust and I have yet to use a single
unsafe
block.Saying “but… unsafe!” is like saying Python isn’t memory safe because it has
ctypes
, or Go isn’t memory safe because of itsunsafe
package.You don’t have to use unsafe C++ functions either
C++ is technically safe if you follow best practices
The issue, to me, is that people learn older versions of the language first, and aren’t aware of the better ways of doing stuff.
IMO people should learn the latest C++ version first, and only look at the older types of implementation when they come across them
Yeah but it’s virtually impossible to reliably follow best practices. The compiler won’t tell you when you’re invoking UB and there is a lot of potential UB in C++.
So in practice it is not at all safe.
I agree
I was only adding my opinion (that people should try to always use the latest version of C++, which is inherently safer, but still not 100% safe)
See my reply to funtrek’s reply.
Sure, but you have to explicitly enable this feature. In c++ you can use the oldest shit from twenty years ago and your compiler happily does its job. All my c++ books are full of “you shouldn’t use xy as it is deemed unsafe now, but of course you still can”.
If a “safe C++” proposal truly proposes a safe subset, then yes your C++ code would have to opt-in to doing unsafe things. For the purposes of this discussion of a safe subset … the point is moot.
It’s not moot. The Safe C++ is opt-in to safety. It has to be because otherwise it wouldn’t be compatible with existing C++.
That’s a laudable difference /s. Using Rust is also an “opt-in” option.